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ABSTRACT

Recent studies have shown that the use of metformin prevents the development and spread of cancer. Metformin may show this 
effect by increasing SIK1 and SIK2 gene expression. For this purpose, MCF-7 cells cultured in appropriate media were divided into 8 
groups (1) control, (2) 10 ng/mL TGF-β1, (3) 1.25 mM Metformin, (4) 2.5mM Metformin, (5) 20mM Metformin, (6) 1.25 mM Metform-
in+10 ng/ml TGF-β1, (7) 2.5mM Metformin+10 ng/ml TGF-β1 and (8) 20mM Metformin+10 ng/ml TGF-β1 doses were administered, 
respectively. PCR was performed for SIK1 and SIK2 genes, with GAPDH being the reference gene. Application of 10 ng/ml TGF-β1 
to MCF-7 cell significantly increased expression level of SIK1 mRNA by 1.6 fold.  In non-invasive (TGF-β1 not administered)  MCF-7 
cell, 2.5 mM and 20 mM metformin increased expression levels of SIK1 mRNA by 1.8, 3.4 fold and SIK2 mRNA by 1.6 and 3.3 fold 
respectively. In invasive (TGF-β1  administered)  MCF-7 cell, 1.25, 2.5 and 20 mM metformin increased expression levels of SIK1 
mRNA by 3.5, 3.7, 4 fold; and SIK2 mRNA by 1.9, 2.4, 3.5 fold, respectively. Metformin increased SIK1 and SIK2 gene expression 
dose-dependently in non-invasive and invasive MCF-7 cells, more significantly in invasive ones. The increase in the SIK1 gene was 
greater than in SIK2. In the light of these results, investigating the effects of metformin on SIK1 and SIK2 genes in different TGF-β1 
sensitive cancer types may open new doors for cancer treatment.
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INTRODUCTION 

In women, breast cancer remains the most com-
mon and deadly types of cancer after lung can-
cer.1 To curb this disease, prevention of metasta-
sis and invasion as causative agents of mortality 
and morbidity is important in the treatment of this 
disease.2 The studies on this subject have focused 
primarily on the Transforming Growth Factor Beta 
1 (TGF-β1) signaling pathway involved in embry-
onic development, regulation of cell growth, dif-
ferentiation and apoptosis. Changes in TGF-β1 
signals have been associated with many diseases 
(fibrosis, cancers and etc.) and have been shown to 
have an accelerating effect on growth, especially in 
the advanced stages of the tumor.3 For transporting 

the signals from TGF-β1 receptors to the nucleus, 
Smads are used as mediators4 and one of the target 
genes of the TGF-β1 / Smad signal is the Salt In-
ducible Kinase (SIK) gene.5

SIK is a serine / threonine protein kinase that 
belongs to the 5’ AMP-activated protein kinase 
(AMPK) family isolated from the adrenal glands.6 

It must be phosphorylated for kinase activity by 
Serine / Threonine Kinase 11 (LKB1) which is a 
tumor suppressor gene.7 SIK1 is involved in many 
different processes such as cell cycle regulation, 
regulation of gluconeogenesis and lipogenesis, 
growth and differentiation of muscle, and tumor 
suppression. 
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Its tumor suppression property is related to down-
regulating Transforming Growth Factor Beta 
Receptor 1 (TGFBR1)5, phosphorylating CREB 
Regulated Transcription Coactivator 1 (CRTC1/
TORC1) and CREB Regulated Transcription Co-
activator 2 (CRTC2 / TORC2)8 and Tumor Protein 
P53 (p53 / TP53)-dependent anoikis pathways.9 On 
the other hand, SIK2 Inhibits CREB activity which 
is associated with chemotherapy resistance, tumor 
progression, and decreased survival.10 This inhibi-
tion occurs via phosphorylation of Serine 794 of 
insulin receptor substrate 1 (IRS1) and phospho-
rylation of cAMP Responsive Element Binding 
Protein (CREB)-specific coactivator CRTC1.11 In 
breast cancer patients the increase in SIK2 appears 
to be significantly associated with better survival12, 
while depletion in SIK1 is releated with poor prog-
nosis.9 Then, it is clear that SIK1 and SIK2 may 
act synergistically as potential tumors suppressor 
factors in breast cancer biology.
Metformin (1,1-dimethylbiguanide) is an antidia-
betic agent widely used in the treatment of type II 
diabetes13 and recent clinical studies show that the 
risk of cancer is low in type II diabetes patients 
using metformin.14 In vivo and in vitro molecular 
studies have pinpointed the importance of met-
formin in the treatment and pathophysiology of 
breast cancer.15 Moreover, scientists have reported 
that metformin exerts its anti-carcinogenic effects 
by affecting cell proliferation and apoptosis16 via 
increasing AMPK activation17 and this later in-
crease is due to the phosphorylation of AMPK 
via LKB1.18 Albeit many reports about metformin 
signaling through AMPK, the signaling which is 
due to biological association of SIK1 and SIK2 in 
breast cancer pathophysiology, still it remains to 
clarify the spectrum of biological effects of met-
formin on SIK1 and SIK2 .
In this regard, we made the assumption that met-
formin will act on LKB1 through SIK1 and SIK2, 
together in coordination with AMPK signaling 
mechanism.

MATERIALS AND METHODS 

Cell Culture Design

MCF-7 cells (established from human breast carci-
noma) were used in the this experiment (T.R. Min-
istry of Agriculture and Rural Affairs, Directorate 
of Foot and Mouth Disease). They were cultured in 
the RPMI 1640 medium (Biological Industries) [fe-
tal bovine serum (10%, Sigma-Aldrich), penicillin/ 
streptomycin (100 U/ 0.1 mg, Sigma-Aldrich), Na-
pyruvate (1%, Biological Industries)] in 5 % CO2 
in the 25 cm2 flasks at 370. Metformin (D15,095-9) 
was obtained from Sigma company. TGF-β1 (ab: 
50036, lot: GR131362-1) was obtained from Ab-
cam company. 

The (1) control, (2) 10 ng/mL TGF-β1, (3) 1.25 
mM metformin, (4) 2.5 mM metformin, (5) 20 mM 
metformin, (6) 1.25 mM metformin and 10 ng/
ml TGF-β1, (7) 2.5 mM metformin and 10 ng/ml 
TGF-β1 and (8) 20 mM metformin and 10 ng/ml 
TGF-β1 groups were created. In our study, TGF-β1 
is used to make invasive MCF-7 cells. TGF-β1 and 
metformin concentrations were determined ac-
cording to the our previous study.16 Drug doses 
were performed in all groups in the 25 cm2 flasks at 
70-80% confluence. They were cultured in RPMI 
1640 medium in 5% CO2 and at 370C. Only com-
plete medium was added for control group.

Quantitative RT-PCR

After the 24th hour of drug administration, the 
medium was discharged from the flasks. Trypsin 
EDTA was used for detaching of the cells. Us-
ing High Pure PCR RNA Isolation Kit (Cat. No: 
11828665001, Roche) RNA isolation was per-
formed. Obtained RNAs’ quality and quantity 
were evaluated by Nanodrop spectrophotometer. 
After this, using Transcriptor First Strand cDNA 
Synthesis Kit (Cat. No. 04379012001; Roche) mR-
NAs were converted to cDNA. Primers and probes 
were designed for each gene using Universal Probe 

Table 1. Sequences of polymerase chain reaction primers

Genes  Forward primer Reverse primer Probes

GAPDH AGCCACATCGCTCAGACAC GCCCAATACGACCAAATCC (probe 60, Roche)

SIK1 CATCCCCTTCTTCATGTCTCA GATCTGGGCGATGGTGAT (probe 77, Roche)

SIK2 CGTGACCTCAAAGCTGAAAA TTTCCAAAACCGAAATCTGC (probe 18, Roche)
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Library (UPL Roche) software and confirmed by 
BLASTn analysis (Table 1). The SIK1 and SIK2 
genes expression were measured via Quantitative 
RT-PCR. GAPDH was accepted as reference gene 
and control groups were accepted as calibrator. Us-
ing QIAGEN 2009 relative expression software 
(REST) analysis of relative gene expression for the 
study groups was performed. P< 0.05 was accepted 
as significant.

RESULTS 

SIK1

In the MCF-7 cells, the application of an amount 
of 1.25 mM metformin does not cause a signifi-
cant change in the expression level of SIK1 mRNA 
whereas 2.5 mM and 20 mM metformin increased 
expression levels of SIK1 mRNA by 1.8 fold 
(P(H1)= 0.011) and 3.4 fold (P(H1)= 0.001), re-
spectively. Expression level of SIK1 mRNA in-
creased significantly (P(H1)= 0.037) by 1.6 fold 
at second group. The combination of 10 ng/mL 
TGF-β1 and 1.25, 2.5 and 20 mM metformin in-
creased expression levels of SIK1 mRNA by 3.5 
fold (P(H1)= 0.004), 3.7 fold (P(H1)= 0.001) and 4 
fold (P(H1)= 0.001) respectively (Figure 1).

SIK2

In the MCF-7 cells, the sole, application of 1.25 
mM metformin caused no significant change in 
expression level of SIK2 mRNA whereas 2.5 mM 
and 20 mM metformin increased expression lev-
els of SIK2 mRNA by 1.6 fold (P(H1)= 0.027) and 

3.3 fold (P(H1)= 0.001), respectively. Application 
of 10 ng/mL TGF-β1 caused no significant change 
in expression level of SIK2 mRNA whereas com-
binations with 1.25, 2.5 and 20 mM metformin 
increased expression levels of SIK2 by 1.9 fold 
(P(H1)= 0.006), 2.4 fold (P(H1)= 0.006) and 3.5 
fold (P(H1)= 0.007), respectively (Figure 2).

DISCUSSION
In this study, we found out that metformin dose-
dependently upregulated SIK1 and SIK2 in MCF-7 
cells. The increase of SIK1 gene expression was 
more than SIK2 by metformin in both non-invasive 
and invasive types. Interesingly, metformin induc-
tion was much more effective in upregulating of 
SIK1 and SIK2 genes in invasive MCF-7 cells than 
non invasive. However we have highlight that the 
increase in SIK1 gene expression was observed in 
cells treated with only TGF-β1. This increase may 
be due to counter-regulatory mechanisms that oc-
cur in response to TGF-β1-induced migration.

The association of metformin use with low can-
cer risk in patients with type 2 diabetes has been 
demonstrated by epidemiological studies.14 It is 
thought that metformin exerts its anticancer ef-
fect by affecting cell proliferation and apoptosis.19 
AMPK activation and mechanistic target of rapa-
mycin (mTOR) inhibition are held responsible for 
its antiproliferative effect.20 AMPK activation re-
quires LKB1 which is a serine threonine protein 
kinase.21 In a study with MCF-7 cells, metformin 
was shown to increase AMPK phosphorylation via 
LKB1 in a dose-dependent manner.18 Increased 
AMPK causes inhibition of mTOR by phospho-
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Figure 1. Gene expression changes of SIK1 in MCF-7 cells. 

* P< 0.05

Figure 2. Gene expression changes of SIK2 in MCF-7 cells.

* P< 0.05
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rylating CRTC2, which has a critical role in tumor 
suppression.22 Inhibition of mTOR may be one of 
the effective mechanisms to prevent migration and 
invasion.23 In addition, the absence of CRTC2 in-
creases angiogenesis, which plays a critical role 
in tumor progression.24 Another study has shown 
that SIK1 suppresses CREB activity, a transcrip-
tion factor, by phosphorylating CRTC.25 Similarly, 
SIK2 also suppresses cAMP-response element-
dependent transcription; however, it is thought that 
the suppression is weaker than SIK1.6

Various studies have been conducted on the SIK1 
and SIK2 genes in different types of cancer. Studies 
reported that SIK1 expression level is significant-

ly lower in primary breast tumors than in normal 
breast tissue.26 These results were later confirmed 
by other team demonstrating a correlation of low 
SIK1 expression in human breast and distal metas-
tasis.9 In agreement with this finding, silencing of 
the SIK1 gene has been shown to induce metasta-
sis in mouse lungs11 and overexpression of SIK1 
reduced tumor stem cells formation and prolifera-
tion in ovarian cancer.27 A recent study showed that 
SIK1 is expressed in lower level in hepatocellular 
carcinoma and increased in SIK1 expression delays 
hepatocellular carcinoma cell proliferation and 
epithelial mesenchymal transition (EMT)28 dem-
onstrating SIK1 key role in p53-dependent anoikis 
molecular pathways and thus has an important role 
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in suppressing metastasis.11 Similarily, SIK2 inhib-
its melanogenesis by suppressing CRTC1.29 

SIK1 may exert its tumor suppressive effect by 
phosphorylating Histone Deacetylase (HDAC) 
and limiting migration.30 In addition, SIK1 seems 
to be effective on EMT.31 It has been shown that 
Snail Family Zinc Finger 2 (Snail2), Twist Fam-
ily BHLH Transcription Factor  (Twist), Zinc 
Finger E-Box Binding Homeobox 1 (Zeb1) and 
Zinc Finger E-Box Binding Homeobox 2 (Zeb2), 
genes which are inducable by EMT significantly 
increased as a result of silencing the SIK1 genes.32 
SIK may also exert its tumor-suppressing effect by 
blocking TGF-β1 / Smad signaling, which is an 
effective pathway in carcinogenesis. It is thought 
that SIK achieves this effect by participating in 
protein complexes which contain SMAD Spe-
cific E3 Ubiquitin Protein Ligase 2 (Smurf2) and 
SMAD Family Member 7 (Smad7) that down-reg-
ulate TGFBR1.5

Contrary to the tumor suppressor activities of 
SIK1 and SIK2, studies have also suggested that 
both SIK1 and SIK2 would act like oncogenes. In 
contrast to the suppressive effect of high expres-
sion levels of SIK1 in lung and breast tumors, 
there are also studies suggesting the existence of 
positive correlation between the SIK1 expression 
level and other tumors. Indeed, high expression 
level of SIK1 has been shown to be associated with 
adrenocortical tumor cells stimulated by adreno-
corticotropic hormone in mice.33 In addition, SIK2 
is one of the oncogenes that provides an advantage 
for the development of cancer cells and correlates 
with the pathogenesis of ovarian cancer patients.34 
In another study, the absence of SIK2 supported 
the sensitivity of paclitaxel in ovarian cancers, 
while the presence of SIK2 correlated with the 
poor prognosis of patients with advanced ovarian 
cancer.35 All these bifunctional effects of SIK1 and 
SIK2 suggest the existence of tissue factors that 
will co-modulate the expression of SIK1 and SIK2 
are different type of cancer. 

In our our study, we reported that metformin boost  
SIK1 and SIK2 gene expression in non-invasive 
and invasive MCF-7 cells. These effects can be due 
in part by its inhibitory effect  metastasis activity in-
hibited by CREB via the LKB1–SIK–CRTC sign-

aling pathway. On the other hand, the upregulation 
of SIK1 and SIK2 may inhibit metastasis by caus-
ing downregulation of TGFBR1. Inhibition in cells 
migration through HDACs and lastly, metformin 
may exert its migration inhibitory effect through 
this pathway, as LKB1-SIK1 signaling is known to 
inhibit EMT by suppressing Zeb1. Several studies 
remain to be carry out to address the plausibility of 
these hypotheses and relate their biological func-
tions and their tumorigenocity (Figure 3).

In conclusion, metformin may exert its anticancer 
effect by increasing the expression of SIK1 and 
SIK2 genes in non-invasive and invasive MCF-
7 cells. In this context, investigating the effects 
of metformin on SIK1 and SIK2 genes in differ-
ent TGF-β1 sensitive cancer types may open new 
doors for cancer treatment.
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