Efficacy of the Combination of Venetoclax and Azacitidine in Elderly of Frail Relapsed/ Refractory Patients with Acute Myeloid Leukemia, First Multi-Institutional Real World Experience from Turkey

Sude Hatun AKTIMUR¹, Ahmet Kursad GUNES², Osman AKIDAN³, Ayse KARATAS⁴, Mehmet TURGUT⁵

¹ Samsun Training and Researh Hospital, Department of Internal Medicine and Hematology, Samsun
 ² Ankara City Hospital, Department of Internal Medicine and Hematology, Ankara
 ³ Karadeniz Technical University, Faculty of Medicine, Department of Internal Medicine and Hematology, Trabzon
 ⁴ Hacettepe University, Faculty of Medicine, Department of Hematology, Ankara
 ⁵ Ondokuz Mayıs University, Department of Hematology, Faculty of Medicine, Samsun, TURKEY

ABSTRACT

Acute myeloid leukemia (AML) usually seen in the elderly. The quest for effective, tolerable and durable response for the treatment of elderly or frail patients with AML resulted venetoclax combination. The aim of this study was to present here the experience and data for the use of venetoclax in combination with azacitidine in elderly or frail and unfit patients with relapse/refractory AML treated outside of a clinical trial. We retrospectively analyzed 30 consecutive elderly (\geq 65 years old) or frail patients with relapse/refractory AML, who failed at least one prior therapy for AML and treated with venetoclax in combination with 5-azacitidine at five institutions in Turkey between December 2018 - Januarry 2020. The patients were taken venetoclax at dose of 400 mg daily, and 75 mg/m²/day azacitidine subcutaneously for 7 days per 28-day cycle. Complete remission (CR), incomplete blood count recovery (CRi), PR, overall survival (OS) and event free survival (EFS) were assessed. A total of 30 patients with a median age of 67 (range= 33-84) from 5 different centers were included in the final analysis. Overall response rate (ORR) was 63.3% (n= 19); 15 (50%) patients achieved CR or CRi and 4 (13.3%) patients achieved PR while 11 patients (37.7%) did not respond to therapy. Median 8 months follow-up, 6 months OS rate 66.7%, 1-year OS rate was 19.8% with a median OS was 7 months (95% CI: 7.8 -10.1). The mortality risk of patients under 60 is statistically significantly lower than those over 60 (p= 0.007, HR: 0.109 (95% CI: 0.022 - 0.55). Combination of venetoclax + HMA in patients with relapse refractory AML with poor performance score, it provided somewhat higher response rates and additionally, the responding patients benefited surval advantage when compared to non-responding patients.

Keywords: AML, Elderly, Venetoclax, Azacitidine, Survival

INTRODUCTION

Acute myeloid leukemia (AML) usually seen in the elderly. In this group of patients, the risk of having adverse genomic features and increased resistance of treatments are high.¹ Thus, ≥ 65 years old patients with AML generally respond poorly to conventional induction chemotherapy.² Additionally, the frailty of the older patients, such as comorbidities, compromised organ function and poor performance status could prevent them to take cytotoxic induction therapies.³⁻⁵ As a result of the assessments of conventional therapies on elderly patients; currently we know "intensive chemotherapy does not benefit most older patients".⁴ Therefore, standard of care for older or unfit patients is lowerintensity treatment regimens, including hypomethylating agents (HMAs) azacitidine or decitabine or low-dose cytarabine.

However, this treatment regimens needs longer time (3.5 to 4.3 months for best response) and yields lower response rate (10%-50%, including hematologic improvement), not curative and have short overal survival (OS) of less than 1 year.⁶⁻⁹

The quest for effective, tolerable and durable response for the treatment of elderly or frail patients with AML resulted venetoclax combination.¹⁰ The rationale of this approach is based on the B-cell lymphoma 2 (BCL-2) protein, which plays pivotal role in the survival of AML blasts as a key regulator of the mitochondrial apoptotic pathway.¹¹⁻¹³ To maintain myeloblast survival, pro-apoptotic BAX must be sequestered with BCL-2, thus, BCL-2 inhibiton resulted with cell death via mitochondrial outer membrane permeabilization.14 Efficiacy of venetoclax -a potent, selective, oral inhibitor of BCL-2- monotherapy in patients with relaps or refractory AML has been demonstared with tolerable safety profile.¹⁵ Also, another critical anti-apoptotic protein for AML pathogenesis, MCL-1, which is a potential source of resistance to venetoclax treatment, is reduced with azacitidine.^{16,17} Furthermore, synergistic effects of venetoclax and azacitidine combination has been assessed in pre-clinical models of AML cells¹⁸, and the clinical efficiacy and tolerable safety profile has been shown with high complete remission (CR) + complete remission with incomplete blood count recovery (CRi) rate, low early mortality rates and overall survival (OS) extending beyond 17 months in elderly, frail and unfit AML patients who were not candidate for intensive chemotherapy.¹⁰

We present here the first "real world" experience and data from multiple center from Turkey for the use of venetoclax in combination with azacitidine in elderly or frail and unfit patients with relapse/ refractory AML treated outside of a clinical trial.

PATIENTS and METHODS

We retrospectively analyzed 30 consecutive elderly (\geq 65 years old) or frail patients with relapse/ refractory AML, who failed at least one prior therapy for AML and treated with venetoclax in combination with 5-azacitidine at five institutions in Turkey between December 2018-Januarry 2020. Study was approved by Institutional Review Board of Samsun Training and Education Hospital (IRB Approval Number: GOKA/2020/4/3).

Histologically confirmed AML patients with relapsed/refractory disease based on the assessment of bone marrow biopsy and circulating leukemia blasts were analyzed. Data were collected regarding patients clinical characteristics, prior and current therapies, cytogenetics, FLT-3 ITD mutation, adverse events and patients' outcomes. Genetic risk stratification was assessed according to European Leukemia Net combined cytogenetic and molecular profile.19 The patients, who received leukopheresis and/or hydroxyurea before the treatment, for hyperviscosity symptoms with white blood cell (WBC) count is above 100.000/mm3 in peripheral blood were not excluded. Patients response to therapy was defined according to International Working Group criteria.²⁰ According to control bone marrow biopsies (after first and third cycle), < 5% blast count was accepted as CR. CRi, PR and overall survival (OS) and event free survival (EFS) were assessed. The patients were taken venetoclax at dose of 400 mg daily, and 75 mg/m²/day azacitidine subcutaneously for 7 days per 28-day cycle. The dose of venetoclax given to the patients was started as 100 mg and the target dose of 400 mg was reached by performing 3-day rump-ups. Patients who completed venetoclax + azacitidine treatment at least one cycle (4 weeks= 28 days) were included in the study.

Patients who received partial response in the complete response were included in the responded group, while patients who failed to respond were identified as resistant to treatment. The OS was calculated from the time of initial venetoclax dose to the time of death or last follow-up. EFS was defined from initial venetoclax to date of relapse, death or last follow-up.

Statistical Analysis

The data were analyzed with SPSS 21.0 (IBM, NY, USA). Chi-square test was used to compare categorical variables according to the groups. Chi-square test and Fisher Exact test were used to compare categorical variables according to mortality. Independent risk factors affecting mortality compared to OS time and risk factors affecting EFS

	n= 30 patients
Age (Median)	67 (33-83)
Gender	
Male	18 (60%)
Female	12 (40%)
ECOG performance status	
1	3 (10%)
2	18 (70%)
3	9 (30%)
AML type	
De novo	27 (90%)
Secondary	3 (10%)
AML Cytogenetics	. ,
Good	_
Intermediate	25 (83.3%)
Poor	5 (16.7%)
FLT-3 status	· · · ·
Mutated	2 (6.7%)
Unmutated	24 (80%)
Unknown	4 (13.3%)
Bone Marrow Blast percentage	. ,
< 30%	4 (13.3%)
30-50%	11 (36.7%)
> 50%	15 (50%)
Prior Antracycline Based Therapy	
Yes	18 (60%)
No	12 (40%)
Prior HMA	
Yes	14 (46.7%)
No	16 (53.3%)
Prior Allo HCT	· · · · ·
Yes	5 (16.7%)
No	25 (83.3%)
Prior Line of Therapy	(
1	19 (63.3%)
2	6 (20%)
_ ≥3	5 (16.7%)

Table 1. Baseline patient and disease characteristics

time were examined by Cox Regression analysis. Log Rank (Mantel-Cox) test was used to determine whether there was a difference between survival times according to variables. Analysis results were presented as frequency (percent) for categorical data. All tests were 2-sided at a significance level of 0.05. International Journal of Hematology and Oncology

RESULTS

Baseline Patient and Disease Characteristics

A total of 30 patients with a median age of 67 (range= 33-84) from 5 different centers were included in the final analysis. Eighteen of the subjects were male (60%) and 12 were male. Majority of the patients (18 patients, 60%) had an Eastern Cooperative Oncology Group (ECOG) performance score of 2 and 9 patients, (30%) had ECOG performance score of 3. Twenty-seven patients (90%) had denovo AML while 3 patients (10%) had a secondary AML from antecent hematologic disorders. The majority of patients (25 patients, 83.3%) had intermediate risk disease, 5 of patients had adverse risk disease (17.7%) according to ELN risk stratification. No patients had a favorable risk disease. FLT3-ITD mutation was assessed in 26 (86.7%) patients, and positive results were seen in two patients (6.6%).

About 60% of the patients (18/30) were treated with prior antracycline based induction and 14 patients (46.7%) were treated with HMA's previously. Five of the patients (16.6%) had allogenic stem cell transplantation from HLA fully matched sibling donor after antracycline based induction as a consolidation treatment. 19 of 30 (63.3%) patients had prior 1 line of therapy while 6 of patients (20%) had 2 lines of therapy. Five patients (16.7%) presented with hyperviscosity symptoms, received hydroxyurea or leukopheresis, allopurinol was applied to prevent tumor lysis syndrome before treatment. Base bone marrow blast count was assessed in three groups; < 30%, 30% - 50%, and $\ge 50\%$, the results were 13.3% (n= 4), 36.7% (n= 11), and 50% (n: 15), respectively. None of the patients have had central nervous system involvement. Baseline patient and disease characteristics are summarized in Table 1.

Response to Venetoclax Combination Therapy

After a median follow up time of 8 months (1-12 months), the patients were received median 7 cycle of venetoclax and azacitidine combination therapy (range= 1-12). Overall response rate (ORR) was 63.3% (n= 19); 15 (50%) patients achieved CR or CRi and 4 (13.3%) patients achieved PR while 11

Table 2. Response to Vene	toclax					
Total 30 patients						
Number of Venetoclax cyc	cle					
Median	7 (1-10)					
Response to Venetoclax a	and Azacitidine therapy					
Resistant	11 (36.7%)					
Partial Response	4 (13.3%)					
Complete Response / CRi	15 (50%)					
Number of Cycle (CR achi	ieved)					
Median	3 (2-4)					
1-year OS						
Rate	19.8%					
Mean OS	8.2 months (95% Cl: 7-9.4)					
Median OS	7 months (95% CI: 7.8 -10.7					
1 year EFS						
Rate	14.4%					
Mean EFS	6,2 months (95% Cl: 4.8-7.7)					
Median EFS	6 months (95% Cl: 3.7-8.3)					

95% CI Survival Function 0. Survival probability 0.8 0.6 0.4 0.2 0.0 Ô 10 2 4 6 8 12 Survival time in months

Figure 1. Overall survival (OS) data of all patients

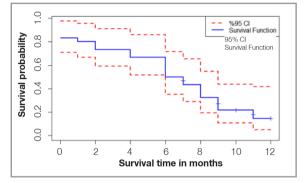


Figure 2. Event free survival (EFS) data for all patients

patients (37.7%) did not respond to therapy. Seven of the 15 patients (46.6%), who achieved CR, had responded to therapy after 3 cycle of the treatment.

Median 8 months follow-up, 6 months OS rate 66.7%, 1-year OS rate was 19.8% with a median OS was 7 months (95% CI: 7.8 -10.1). While 6-month EFS rate was 43.3%, 1-year EFS was 14.4%. Median EFS was 6 months (95% CI: 3.7-8.3). Response rates to venetoclax-azacitidine combination therapy are summarized in Table 2. The OS and EFS graphs of Venetoclax - azacitidine combination therapy are shown in Figure 1 and Figure 2.

The patients were divided into two groups as responders (n= 19, 63.3%) and non-responders (n= 11, 36.7%). There is a statistically significant difference between the median survival times according to the age of 60 and over 60 (11.4 months vs 5.1 months, p= 0.001).

The median survival time of one cycle of treatment was 9.9 months, while the median survival time of the two cycles was 4.6 months (p=0.026). There is a statistically significant difference between the

median survival times compared to the AML mutation (p=0.003). The median survival time of those in the middle risk group was determined as 10.5 months, while the average survival time for those in the poor genetic risk group was 4.8 months.

Independent risk factors affecting 1-year survival were examined by Cox regression analysis. The mortality risk of patients under 60 is statistically significantly lower than those over 60 (p= 0.007, HR: 0.109 (95% CI: 0.022 - 0.55). The mortality risk of those receiving two cycles of treatments is statistically significantly higher than those receiving one cycles of treatment (p= 0.023, HR: 5.864 (95% CI: 1.272 - 27.024). Patients in the poor prognostic group compared to the AML mutation have a statistically significantly higher risk of mortality than those with moderate (p= 0.012, HR: 6.12 (95% CI: 1.501 - 24.956) (Table 3).

There is a statistically significant difference between 1-year survival according to the groups that respond to treatment and those who are nonresponder (p= 0.004). The median survival time of those who responded to the treatment was 9.7

UHOD Number: 4 Volume: 30 Year: 2020

Center Address of the tight of		5	Responders	Non-responders	٩	12-month survival (%95 Cl)	Log-rank test p	HR (%95 CI)	٩
alia 1 1 1 6/4/5 0.108 51/5.005 10.339/6.706 10.301 Reference 0.301 0.302 0.553 0.301 0.301 Reference 0.301 0.301 0.301 0.301 0.302 0.553 0.301 <th0.302< th=""></th0.302<>	Gender Female	12	8 (42.1)	4 (36.4)	1.000*	8.083 (6.024 - 10.142)	0.173	Reference	
Indered 10 4/21.1 6/54.3 0.108* 5.1 (5.05 7.143) 0.001 Peteres 3 4 3 (15.8) 5 (45.3) 5 (45.3) 0.108* 0.109 (0.022 - 0.56) 1 1 12 (5.9) 5 (45.3) 0.367** 1 1 12 (5.3) 5 (45.3) 0.3657** 1 1 12 (5.3) 5 (45.3) 0.3557** 1 1 1 2 (6.94.1) 5 (45.3) 0.3557** 1 1 2 (6.94.1) 5 (45.5) 0.333 (6.106 - 10.561) 0.071 Petereree 1 1 1 (6.5 (45.1) 0 (5.45) 0.557* 9.333 (6.106 - 10.569) 0.751 Petereree 0 1 1 (6.6 (42.1) 0 (6.6 (42.1) (0.6	Male	18	11 (57.9)	7 (63.6)		10.389 (8.708 - 12.07)	1	0.391 (0.093 - 1.639)	0.199
10 4 (21,1) 6 (5,4.5) 0.106' 5 (13,055 - 7,145) 0.001 Reference 20 15 (78.9) 5 (45.5) 0.106 (10.222 - 0.56) 0.106 (0.022 - 0.56) 0.106 (0.022 - 0.56) 1 1 2 (55.3) 5 (45.5) 0.337' 9 3.33 (55.5 - 11.366) 0.106 (0.022 - 0.56) 0.106 (0.022 - 0.56) 9 4 (21.1) 5 (45.5) 9 3.33 (6.16 - 10.561) 0.071 Reference AM 3 1 (5.3) 2 (18.2) 0.537' 9 3.33 (6.16 - 10.561) 0.071 Reference AM 3 1 (5.3) 2 (18.2) 0.537' 9 3.33 (6.16 - 10.561) 0.071 Reference 25 16 (84.2) 9 (81.8) 0.537' 9 3.33 (8.16 - 10.202) 0.72 (0.095 - 5.61) 0.72 (0.095 - 5.61) 26 3 (15.8) 2 (18.2) 0.706''' 9 94 (8.776 - 11.19) 0.026 Reference 27 18 (8.4) 6 (4.45) 0.76 (4.45 - 13.506) 0.77 (0.095 - 5.61) 0.72 (0.095 - 5.61) 28 3 (15.8) 2 (16.2) 2 (18.2) 0.0	Age								
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Under 60	10	4 (21.1)	6 (54.5)	0.108*	5.1 (3.055 - 7.145)	0.001	Reference	
4 3 (15.8) 1 (9.1) 0.367" 1 12 (63.2) 5 (45.5) 9.353 (7.35 - 11.356) 0.911 Reference 4 27 18 (94.7) 5 (45.5) 9.353 (7.35 - 11.356) 0.911 1.062 (0.259 - 4.529) AML 3 1 (5.3) 2 (18.2) 0.357" 9.333 (8.106 - 10.561) 0.071 Reference AML 3 1 (5.3) 2 (18.2) 0.3537" 9.333 (8.106 - 10.561) 0.071 Reference AML 3 1 (5.3) 2 (18.2) 0.3537" 9.333 (8.106 - 10.561) 0.071 Reference 5 3 (15.8) 2 (18.2) 0.0706" 9.947 (8.776 - 11.119) 0.026 Reference 6 3 (15.8) 2 (18.2) 0.706" 9.947 (8.776 - 11.119) 0.026 Reference 6 3 (15.8) 2 (18.2) 0.7700" 9.947 (8.776 - 11.119) 0.026 Reference 6 3 (15.8) 2 (18.2) 0.7700" 9.947 (8.776 - 11.1483) 0.026 Reference 19<	Over 60	20	15 (78.9)	5 (45.5)		11.4 (10.611 - 12.189)		0.109 (0.022 - 0.55)	0.007
4 3 (15.5) 1 (6.1) 0.367* 17 12 (63.2) 5 (45.5) 9.363 (35 - 1.356) 0.31 Pelerence 17 12 (63.2) 5 (45.5) 9.333 (106 - 10.561) 0.071 Pelerence AML 27 18 (94.7) 9 (81.9) 0.337 9.333 (106 - 10.561) 0.071 Pelerence AML 27 18 (3.3) 2 (18.2) 0.333 (1.06 - 10.261) 0.071 Pelerence 5 3 (15.9) 2 (18.2) 0.337 (35 - 19.50) 0.751 Pelerence 5 3 (15.8) 2 (18.2) 0.706* 9.947 (377 - 1.198) 0.721 (0.089 - 5.531) 6 13 (15.8) 2 (15.8) 0.706* 9.467 (257 - 1.1383) 0.721 (0.142 - 13.196) 6 3 (15.8) 2 (15.8) 0.706* 9.467 (257 - 1.1483) 0.023 Pelerence 6 3 (15.8) 2 (15.8) 0.706* 9.467 (257 - 1.1483) 0.023 Pelerence 6 3 (15.8) 2 (15.8) 10.6494 - 15.50930 0.721 (0.142 - 13.196) <	ECOG								
17 12 (53.2) 5 (45.5) 9.333 (7.35 - 11.366) 0.311 Reference 9 4 (21.1) 5 (45.5) 9.667 (6.425 - 10.909) 1.062 (0.259 - 4.529) AML 3 1 (5.3) 2 (18.2) 0.333 (106 - 10.561) 0.071 Reference AML 3 1 (5.3) 2 (18.2) 0.333 (1.10 - 10.899) 0.071 Reference AML 3 1 (5.3) 2 (18.2) 0.706* 9.947 (8.776 - 11.119) 0.072 (0.089 - 5.511) 5 3 (15.8) 2 (13.2) 0.706** 9.947 (8.776 - 11.119) 0.72 (0.089 - 5.512) 6 3 (15.8) 2 (13.2) 0.706** 9.947 (8.776 - 11.119) 0.72 (0.089 - 5.512) 7 5 3 (15.8) 2 (13.2) 0.706** 9.947 (8.776 - 11.119) 0.72 (0.089 - 5.512) 8 5 3 (15.8) 2 (13.2) 0.706** 9.947 (8.776 - 11.119) 0.72 (0.089 - 5.512) 8 5 3 (15.2) 2 (13.2) 0.706** 9.947 (8.776 - 11.119) 0.72 (0.089 - 5.512) 19 12 (8.2)		4	3 (15.8)	1 (9.1)	0.367**				
9 4 (21.1) 5 (45.5) 8.667 (6.425 - 10.500) 1.002 (0.250 - 4.529) M.L 27 18 (94.7) 9 (81.8) 0.537* 9 333 (6.106 - 10.561) 0.071 Reference A.M. 3 1 (5.3) 2 (18.2) 0.337* 9 333 (6.106 - 10.561) 0.071 Reference Z5 1 (6.3) 2 (18.2) 0.337* 9 347 (5.568 - 10.282) 0.751 Reference 5 3 (15.8) 2 (18.2) 0.706** 9 347 (5.76 - 11.119)a 0.026 Reference 6 3 (15.8) 2 (18.2) 0.706** 9 347 (5.77 - 6.11.19)a 0.026 Reference 6 3 (15.8) 3 (7.3) 2 (18.2) 0.706** 9 347 (5.77 - 11.883) 0.003 Reference 6 3 (15.8) 2 (18.2) 0.712* 10 (6.494 - 13.500)ab 0.72 (0.089 - 5.851) 7 3 (15.8) 2 (18.2) 0.706** 9 347 (5.77 - 11.201) 0.72 0.72 (0.039 - 12.04) 8 3 (15.8) 1 (10.67 (9.112 - 11.201) 0.026 Reference 5 (10.412 - 12.	2	17	12 (63.2)	5 (45.5)		9.353 (7.35 - 11.356)	0.911	Reference	
ML 27 18 (94.7) 9 (81.8) 0.537* 9.333 (8.106 - 10.561) 0.071 Reference AML 3 1 (5.3) 2 (18.2) 9 (81.8) 0.537* 9.333 (8.106 - 10.561) 0.071 Reference 25 1 (5.3) 2 (18.2) 9 (81.8) 1.000° 8 27 (5.58 - 10.282) 0.72 (0.089 - 5.851) 6 3 (15.8) 2 (18.2) 9 (81.8) 1.000° 8 27 (5.58 - 10.282) 0.72 (0.089 - 5.851) 7 9 13 (68.4) 6 (54.5) 0.706* 9.947 (8.77 - 11.119)a 0.72 (0.089 - 5.851) 6 3 (15.8) 2 (18.2) 0.706* 9.947 (8.77 - 5.663)b 1.72 - 13.196) 6 5 3 (15.8) 2 (18.2) 0.706* 9.947 (8.77 - 2.7024) 7 3 (15.8) 2 (18.2) 0.716* 9.947 (8.77 - 1.1.19)a 0.026 Reference 25 3 (15.8) 1 (16.79) 2 (18.2) 1.000° 1.057 (112 - 11.2 - 11.2 - 11.3 1) 0.72 (0.089 - 5.1366) 8 1 (2 (5.2) 6 (6.49) 1.0167 (4.12 - 11.2 - 11.2 21) 0.256	0	o	4 (21.1)	5 (45.5)		8.667 (6.425 - 10.909)		1.082 (0.259 - 4.529)	0.914
ML Z7 18 (9.4.7) 9 (81.8) 0.537* 9.333 (1.06 - 10.561) 0.071 Reference AML 3 1 (5.3) 2 (18.2) 0 (1.111 - 10.88) 3.83 (0.765 - 19.512) 25 16 (84.2) 9 (81.8) 1.000' 8.92 (7.558 - 10.282) 0.751 Reference 5 3 (15.8) 2 (18.2) 0.706'' 9.94 (8.776 - 11.119) 0.72 (0.089 - 5.851) 6 3 (15.8) 2 (18.2) 0.706''' 9.94 (8.776 - 11.119) 0.72 (0.089 - 5.851) 6 3 (15.8) 2 (18.2) 0.706''' 9.94 (8.776 - 11.119) 0.026 Reference 6 3 (15.8) 2 (18.2) 0.706''' 9.94 (8.776 - 11.119) 0.026 Reference 7 3 (15.8) 2 (18.2) 0.712'' 0.16.04 - 13.506)ab 1.371 (0.142 - 13.196) 8 3 (15.8) 2 (18.2) 0.712'' 10.64.94 - 13.506)ab 1.371 (0.142 - 13.196) 18 12 (63.2) 2 (18.2) 0.712'' 10.160 (9.112 - 11.221) 0.253 Reference 18	AML Type								
AML 3 1 (5.3) 2 (18.2) 6 (1.111 - 10.88) 3.863 (0.765 - 19.512) 25 16 (64.2) 9 (81.8) 1.000* 8 92 (7.558 - 10.282) 0.751 Reference 5 3 (15.8) 2 (18.2) 1.000* 8 92 (7.558 - 10.282) 0.72 (0.089 - 5.851) 19 13 (68.4) 6 (54.5) 0.706* 9 947 (8.776 - 11.119)a 0.026 Reference 6 3 (15.8) 3 (15.8) 2 (18.2) 0.706* 9 947 (8.776 - 11.119)a 0.72 (0.089 - 5.851) 7 3 (15.8) 2 (18.2) 0.706* 9 947 (8.776 - 11.119)a 0.026 Reference 5 3 (15.8) 2 (18.2) 0.700* 9 947 (8.776 - 11.3.509)ab 1.371 (0.142 - 13.196) 8 3 (15.8) 2 (18.2) 1.000* 16 (3.012 - 6.588) 0.003 Reference 18 12 (63.2) 2 (18.2) 0.712* 10.167 (9.112 - 11.221) 0.253 Reference 18 12 (63.2) 2 (16.39 - 10.311) 0.469 Reference 2.422 (0.487 - 12.044) 18	Primary AML	27	18 (94.7)	9 (81.8)	0.537*	9.333 (8.106 - 10.561)	0.071	Reference	
25 16 (84.2) 9 (81.3) 1000' 8.92 (7558 - 10.282) 0.751 Reference 5 3 (15.8) 2 (18.2) 1000' 8.92 (7558 - 10.282) 0.75 (0.089 - 5.851) 19 13 (68.4) 6 (54.5) 0.706'' 9.947 (6.776 - 11.119) 0.72 (0.089 - 5.851) 6 3 (15.8) 3 (75.3) 2 (18.2) 0.706'' 9.947 (6.776 - 11.119) 0.026 Reference 5 3 (15.8) 2 (18.2) 0.706'' 9.947 (6.776 - 11.119) 0.026 Reference 25 16 (84.2) 9 (81.8) 1.000' 10.52 (9.157 - 11.883) 0.003 Reference 26 3 (15.8) 2 (18.2) 0.712'' 4.8 (3.012 - 6.588) 0.003 Reference 18 12 (65.2) 0.712'' 10.167 (9.112 - 11.221) 0.253 2.422 (0.457 - 12.044) 16 11 (57.9) 5 (45.5) 0.712'' 8.833 (6.743 - 10.924) 0.6 (0.143 - 2.514) 16 11 (57.9) 5 (45.5) 0.712'' 10.167 (9.112 - 11.221) 0.269 2.422 (0.457 - 12.044)	Secondary AML	с С	1 (5.3)	2 (18.2)		6 (1.111 - 10.889)		3.863 (0.765 - 19.512)	0.102
25 16 (84.2) 9 (81.8) 1.000* 8.92 (7.55.8 - 10.282) 0.751 Reference 5 3 (15.8) 2 (18.2) 0.706** 9.947 (8.776 - 11.119)a 0.72 (0.089 - 5.851) 19 13 (68.4) 6 (54.5) 0.706** 9.947 (8.776 - 11.119)a 0.026 Reference 6 3 (15.8) 3 (27.3) 2 (18.2) 0.706** 9.947 (8.776 - 11.119)a 0.026 Reference 5 3 (15.8) 3 (27.3) 2 (18.2) 0.706** 9.947 (8.776 - 11.180)a 0.026 Reference 5 3 (15.8) 2 (18.2) 0.706** 9.947 (8.776 - 11.883)b 1.371 (0.142 - 13.169) 5 3 (15.8) 2 (18.2) 0.712** 10.06* (9.412 - 11.221) 0.253 6.12 (1.501 - 24.956) 5 3 (15.8) 5 (45.5) 0.712** 10.167 (9.112 - 11.221) 0.263 1.371 (0.142 - 13.169) 18 12 (6.45) 0.510** 8.335 (5.439 - 10.311) 0.469 Reference 14 8 (42.1) 6 (54.5) 0.510** 8.333 (5.743 - 10.924)	Allo HCT								
5 3 (15.8) 2 (18.2) 10 (6.494 - 13.506) 0.72 (0.089 - 5.851) 19 13 (68.4) 6 (54.5) 0.706** 9.947 (8.776 - 11.119)a 0.026 Reference 6 3 (15.8) 3 (27.3) 0.706** 9.947 (8.776 - 11.119)a 0.026 Reference 5 3 (15.8) 3 (27.3) 0.706** 9.947 (8.776 - 11.119)a 0.026 Reference 5 3 (15.8) 2 (18.2) 9 (81.8) 1.000* 10.52 (9.157 - 11.883) 0.003 Reference 5 3 (15.8) 2 (18.2) 9 (81.8) 1.000* 10.52 (9.157 - 11.883) 0.003 Reference 5 3 (15.8) 2 (18.2) 9 (81.8) 1.000* 10.52 (9.157 - 11.883) 0.003 Reference 5 3 (15.8) 2 (18.2) 9 (81.8) 1.000* 10.6494 - 13.506)ab 1.371 (0.142 - 13.196) 8 3 (15.8) 5 (45.5) 0.712* 10.167 (9.112 - 11.221) 0.253 Reference 18 12 (63.2) 6 (54.5) 0.712* 10.167 (9.112 - 11.221) 0.253 Reference 14 8 (42.1) 6 (54.39 -	No	25	16 (84.2)	9 (81.8)	1.000*	8.92 (7.558 - 10.282)	0.751	Reference	
19 13(68.4) 6 (54.5) 0.706** 9.947(8.776 - 11.119)a 0.026 Helerence 6 3 (15.3) 2 (18.2) 0.706** 9.947(8.776 - 11.119)a 0.026 Helerence 5 3 (15.3) 2 (18.2) 0.706** 9.947(8.776 - 11.119)a 0.026 Helerence 25 16 (8-4.2) 9 (81.8) 1.000* 10.52 (9.157 - 11.883) 0.003 Helerence 26 3 (15.3) 2 (18.2) 1.000* 10.52 (9.157 - 11.883) 0.003 Helerence 12 7 (36.8) 5 (45.5) 0.712* 10.167 (9.112 - 11.221) 0.253 Helerence 18 12 (63.2) 6 (54.5) 0.712* 10.167 (9.112 - 11.221) 0.253 Helerence 18 12 (63.2) 6 (54.5) 0.712* 10.167 (9.112 - 11.221) 0.253 Helerence 14 8 (42.1) 6 (54.5) 0.510* 8.335 (6.439 - 10.311) 0.469 Helerence 24 11 (57.9) 5 (45.5) 0.510* 8.337 (6.439 - 10.311) 0.405 1.21.043 </td <td>Yes</td> <td>2</td> <td>3 (15.8)</td> <td>2 (18.2)</td> <td></td> <td>10 (6.494 - 13.506)</td> <td></td> <td>0.72 (0.089 - 5.851)</td> <td>0.758</td>	Yes	2	3 (15.8)	2 (18.2)		10 (6.494 - 13.506)		0.72 (0.089 - 5.851)	0.758
19 13 (68.4) 6 (54.5) 0.706** 9.947 (8.776 - 11.119)a 0.026 Reference 6 3 (15.8) 3 (27.3) 0.706** 9.947 (8.776 - 11.119)a 0.026 Reference 5 3 (15.8) 3 (27.3) 10.00** 10.52 (9.157 - 11.833) 0.003 Reference 5 3 (15.8) 2 (18.2) 9 (81.8) 1.000* 10.55 (9.157 - 11.833) 0.003 Reference 5 3 (15.8) 2 (18.2) 9 (81.8) 1.000* 10.55 (9.157 - 11.833) 0.003 Reference 5 3 (15.3) 2 (18.2) 0 (712* 10.167 (9.112 - 11.221) 0.253 Reference 18 12 (63.2) 6 (54.5) 0.712* 10.167 (9.112 - 11.221) 0.253 Reference 18 12 (63.2) 6 (54.5) 0.510* 8.333 (6.743 - 10.924) 0.6103* 2.422 (0.437 - 12.044) 14 8 (42.1) 6 (54.5) 0.510* 8.333 (6.743 - 10.924) 0.610 (143 - 2.514) 14 8 (42.1) 6 (54.5) 0.430 (8.787 - 12.07) 0.426 </td <td>Cycle</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Cycle								
6 3 (15.8) 3 (27.3) 4.667 (2.671 - 6.663)b 5.864 (1.272 - 27.024) 7 0 (6.494 - 13.506)ab 1.371 (0.142 - 13.196) 1.377 (0.142 - 13.196) 25 16 (84.2) 9 (81.8) 1.000* 10.52 (9.157 - 11.883) 0.003 Reference 25 3 (15.8) 5 (45.5) 1.000* 10.52 (9.157 - 11.883) 0.003 Reference 12 7 (36.8) 5 (45.5) 0.712* 10.167 (9.112 - 11.221) 0.253 Reference 18 12 (63.2) 6 (54.5) 0.712* 10.167 (9.112 - 11.221) 0.253 Reference 16 11 (57.9) 5 (45.5) 0.710* 8.335 (6.743 - 10.321) 0.263 Reference 14 8 (42.1) 6 (54.5) 0.510** 8.333 (7.93 - 10.674) 0.6 (0.143 - 2.514) 24 14 (73.7) 10 (90.9) 0.438** 9.333 (7.993 - 10.674) 0.6 (0.143 - 2.986) 2 2 (10.5) 0 (0) 8.334 (- 12.077) 0.465 Reference 2 2 (10.5) 10 (90.9) 0.438** 9.333 (7.993		19	13 (68.4)	6 (54.5)	0.706**	9.947 (8.776 - 11.119)a	0.026	Reference	
e 5 3 (15.8) 2 (18.2) 10 (6.494 - 13.506)ab 1.371 (0.142 - 13.196) 25 16 (84.2) 9 (81.8) 1.000* 10.52 (9.157 - 11.883) 0.003 Reference 5 3 (15.8) 2 (18.2) 9 (81.9) 1.000* 10.52 (9.157 - 11.883) 0.003 Reference 12 7 (36.8) 5 (45.5) 0.712* 10.167 (9.112 - 11.221) 0.253 Reference 18 12 (63.2) 6 (54.5) 0.712* 10.167 (9.112 - 11.221) 0.253 Reference 16 11 (57.9) 5 (45.5) 0.710* 8.333 (6.743 - 10.924) 0.242 (0.487 - 12.044) 14 8 (42.1) 6 (54.5) 0.510** 8.337 (6.439 - 10.311) 0.469 Reference 24 14 (73.7) 10 (90.9) 0.438* 9.333 (7.993 - 10.674) 0.6 (0.143 - 2.514) 24 14 (73.7) 10 (90.9) 0.438* 9.333 (7.993 - 10.674) 0.6 (0.143 - 2.514) 24 13 (15.8) 1 (9.1) 0.436* 9.333 (7.993 - 10.674) 0.405 Reference 24 1 (73.7) 10 (90.9) 0.438** 9.333 (7.993 - 10.574)	2	9	3 (15.8)	3 (27.3)		4.667 (2.671 - 6.663)b		5.864 (1.272 - 27.024)	0.023
25 16 (84.2) 9 (81.8) 1.000* 10.52 (9.157 - 11.883) 0.003 Reference 5 3 (15.8) 2 (18.2) 9 (81.8) 1.000* 10.52 (9.157 - 11.883) 0.003 Reference 12 7 (36.8) 5 (45.5) 0.712* 10.167 (9.112 - 11.221) 0.253 Reference 18 12 (63.2) 6 (54.5) 0.712* 10.167 (9.112 - 11.221) 0.253 Reference 16 11 (57.9) 5 (45.5) 0.712* 10.167 (9.112 - 11.221) 0.253 Reference 14 8 (42.1) 6 (54.5) 0.510** 8.335 (6.439 - 10.311) 0.469 Reference 24 14 (73.7) 10 (90.9) 0.436** 9.333 (7.993 - 10.674) 0.6 (0.143 - 2.514) 24 3 (15.8) 1 (9.1) 0.436** 9.333 (7.993 - 10.674) 0.6 (0.143 - 2.514) eucohereesi 9 (3.642 - 12.07) 0.469 8 (3.842 - 12.163) 0.56 (0.143 - 12.965) 2.54 (0.295 - 21.866) 2 2 (10.5) 1 (9.1) 0.327** 10.28 (8.88 - 11.63) 2.51 (0.488 - 12.987)	3 and more	2	3 (15.8)	2 (18.2)		10 (6.494 - 13.506)ab		1.371 (0.142 - 13.196)	0.785
Moderate 25 16 (84.2)9 (61.8)1.000*1.052 (9.157 - 11.833)0.003ReferencePoor53 (15.8)2 (18.2)1.000*10.52 (9.157 - 11.833)0.003ReferencePacycline Use127 (36.8)5 (45.5)0.712*10.167 (9.112 - 11.221)0.253ReferenceNo127 (36.8)5 (45.5)0.712*10.167 (9.112 - 11.221)0.253ReferenceNo1611 (57.9)5 (45.5)0.712*10.429 (8.733 - 10.924)2.422 (0.437 - 12.044)No1611 (57.9)5 (45.5)0.510**8.375 (6.439 - 10.311)0.469ReferenceNo148 (42.1)6 (54.5)0.510**8.375 (6.439 - 10.311)0.469ReferenceNo2414 (73.7)10 (90.9)0.438**9.333 (7.993 - 10.574)0.6 (0.143 - 2.514)No2414 (73.7)10 (90.9)0.438**9.333 (7.993 - 10.574)0.65 (0.143 - 2.514)No2414 (73.7)10 (90.9)0.438**9.333 (7.993 - 10.574)0.405Res22 (10.5)0 (0)8 (3.842 - 12.159)2.54 (0.295 - 21.866)studied43 (15.8)1 (9.1)0.327*10.28 (8.88 - 11.63)2.54 (0.295 - 21.866)studied43 (15.8)1 (9.1)0.327*10.28 (8.88 - 11.63)2.54 (0.295 - 21.866)studied521 (9.1)0.327*10.28 (8.88 - 11.63)0.056Referencestudied521 (9.1)	AML Mutation								
Door5 $3(15.8)$ $2(18.2)$ $4.8(3.012 - 6.588)$ $6.12(1.501 - 24.956)$ acycline Use12 $7(36.8)$ $5(45.5)$ 0.712^* $10.167(9.112 - 11.221)$ 0.253 ReferenceNo12 $7(36.8)$ $5(45.5)$ 0.712^* $10.167(9.112 - 11.221)$ 0.253 ReferenceNo16 $11(57.9)$ $5(45.5)$ 0.712^* $10.167(9.112 - 11.221)$ 0.253 ReferenceNo16 $11(57.9)$ $5(45.5)$ 0.510^{**} $8.337(6.439 - 10.311)$ 0.469 ReferenceNo16 $11(57.9)$ $5(45.5)$ 0.510^{**} $8.375(6.439 - 10.311)$ 0.469 ReferenceNo24 $14(73.7)$ $10(90.9)$ 0.438^{**} $9.333(7.993 - 10.674)$ 0.405 ReferenceNo24 $13(75.8)$ $1(9.1)$ $8(3.842 - 12.168)$ $2.54(0.295 - 21.866)$ studied4 $3(15.8)$ $1(9.1)$ $8(3.842 - 12.168)$ $2.54(0.295 - 21.866)$ studied4 $3(15.8)$ $1(9.1)$ $8(3.842 - 12.168)$ $2.54(0.295 - 21.866)$ studied5 $1(9.5)$ $3(27.3)$ 0.327^{*} $10.28(8.88 - 11.68)$ 2.54	Moderate	25	16 (84.2)	9 (81.8)	1.000*	10.52 (9.157 - 11.883)	0.003	Reference	
acycline Use 12 7 (36.8) 5 (45.5) 0.712* 10.167 (9.112 - 11.221) 0.253 Reference Vo 18 12 (63.2) 6 (54.5) 0.712* 10.167 (9.112 - 11.221) 0.253 Reference Vo 16 11 (57.9) 5 (45.5) 0.510** 8.333 (6.743 - 10.311) 0.469 Reference Vo 16 11 (57.9) 5 (45.5) 0.510** 8.375 (6.439 - 10.311) 0.469 Reference Vo 16 11 (57.9) 5 (45.5) 0.510** 8.375 (6.439 - 10.311) 0.469 Reference Vo 24 14 (73.7) 10 (90.9) 0.438** 9.333 (7.993 - 10.674) 0.6 (0.143 - 2.514) Vo 24 14 (73.7) 10 (90.9) 0.438** 9.333 (7.993 - 10.674) 0.6 (0.143 - 2.514) Vo 22 2 (10.5) 10 (90.9) 0.438** 9.333 (7.993 - 10.674) 0.6 (0.143 - 2.514) Vo 22 2 (10.5) 1 (9.09) 0.438** 9.333 (7.993 - 10.674) 0.405 Reference Vo 22 2 (10.5) 1 (9.1) 8.332 (7.993 - 10.674) 0.405 <	Poor	Ð	3 (15.8)	2 (18.2)		4.8 (3.012 - 6.588)		6.12 (1.501 - 24.956)	0.012
Vo12 7 (36.3) 5 (45.5) 0.712^* 10.167 (9.112 - 11.221) 0.253 Referencefes1812 (63.2) 6 (54.5) 0.712^* 10.167 (9.112 - 11.221) 0.253 ReferenceNuse1611 (57.9) 5 (45.5) 0.510^{**} 8.833 (6.743 - 10.924) 2.422 (0.487 - 12.044)Nuse1611 (57.9) 5 (45.5) 0.510^{**} 8.375 (6.439 - 10.311) 0.469 ReferenceNo1611 (57.9) 5 (45.5) 0.510^{**} 8.375 (6.439 - 10.311) 0.469 ReferenceNo2414 (73.7) 10 (90.9) 0.438^{**} 9.333 (7.993 - 10.674) 0.6 (0.143 - 2.514)No2414 (73.7) 10 (90.9) 0.438^{**} 9.333 (7.993 - 10.674) 0.405 ReferenceNo2414 (73.7) 10 (90.9) 0.438^{**} 9.333 (7.993 - 10.674) 0.265 - 2.1866)No2417 (71) 8 (3.842 - 12.158) 2.54 (0.295 - 21.866)studied4 3 (15.8) 1 (9.1) 8 (3.842 - 12.158) 2.54 (0.295 - 21.866)studied4 3 (15.8) 1 (9.1) 3 (3.232 - 9.965) 2.54 (0.295 - 21.866)studied4 3 (15.8) 1 (9.1) 3 (27.3) 0.327^{*} 10.28 (8.88 - 11.68)studied5 2 (10.5) 3 (27.3) 0.327^{*} 10.28 (8.88 - 11.68) 0.56 (1.128 (1.561 - 15.422)store5 2 (10.5) 3 (27.3) 0.327^{*} 10.28 (8.88 - 11.68) <t< td=""><td>Antracycline Use</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Antracycline Use								
(es1812 (63.2) $6 (54.5)$ $8.833 (6.743 - 10.924)$ $2.422 (0.487 - 12.044)$ A Use101611 (57.9) $5 (45.5)$ 0.510^{**} $8.335 (6.439 - 10.311)$ 0.469 ReferenceA Use14 $8 (42.1)$ $6 (54.5)$ 0.510^{**} $8.375 (6.439 - 10.311)$ 0.469 ReferenceA O24 $14 (73.7)$ $10 (90.9)$ 0.438^{**} $9.333 (7.993 - 10.674)$ $0.6 (0.143 - 2.514)$ A O24 $14 (73.7)$ $10 (90.9)$ 0.438^{**} $9.333 (7.993 - 10.674)$ $0.61 (0.143 - 2.514)$ A O24 $14 (73.7)$ $10 (90.9)$ 0.438^{**} $9.333 (7.993 - 10.674)$ 0.405 ReferenceA O24 $14 (73.7)$ $10 (90.9)$ 0.438^{**} $9.333 (7.993 - 10.674)$ 0.405 ReferenceA O24 $14 (73.7)$ $10 (90.9)$ 0.438^{**} $9.333 (7.993 - 10.674)$ 0.405 ReferenceA O25 $17 (9.1)$ $8 (72.7)$ 0.327^{*} $10.28 (8.88 - 11.68)$ 0.056 ReferenceA O25 $17 (89.5)$ $8 (72.7)$ 0.327^{*} $10.28 (8.88 - 11.68)$ 0.056 ReferenceA C25 $2 (10.5)$ $3 (27.3)$ 0.327^{*} $10.284 - 8.116$ $3.622 (0.851 - 15.422)$	No	12	7 (36.8)	5 (45.5)	0.712*	10.167 (9.112 - 11.221)	0.253	Reference	
V Use V Use <th< td=""><td>Yes</td><td>18</td><td>12 (63.2)</td><td>6 (54.5)</td><td></td><td>8.833 (6.743 - 10.924)</td><td></td><td>2.422 (0.487 - 12.044)</td><td>0.280</td></th<>	Yes	18	12 (63.2)	6 (54.5)		8.833 (6.743 - 10.924)		2.422 (0.487 - 12.044)	0.280
Vo 16 11 (57.9) 5 (45.5) 0.510** 8.375 (6.439 - 10.311) 0.469 Reference fes 14 8 (42.1) 6 (54.5) 0.510** 8.375 (6.439 - 10.311) 0.469 Reference vo 24 14 (73.7) 10 (90.9) 0.438** 9.333 (7.933 - 10.674) 0.6 (0.143 - 2.514) vo 24 14 (73.7) 10 (90.9) 0.438** 9.333 (7.933 - 10.674) 0.405 Reference res 2 2 (10.5) 0 (0) 6.5 (3.035 - 9.965) 2.54 (0.295 - 21.866) studied 4 3 (15.8) 1 (9.1) 8 (3.842 - 12.158) 2.517 (0.488 - 12.987) eatment leukopheresis hydroxitrea 1 (9.1) 8 (3.842 - 12.158) 0.056 Reference vo 25 17 (89.5) 8 (72.7) 0.327* 10.28 (8.88 - 11.68) 0.056 Reference deternce 5 2 (10.5) 3 (27.3) 5.6 (3.034 - 8.116) 3.622 (0.851 - 15.422)	HMA Use								
(es) 14 8 (42.1) 6 (54.5) 10.429 (8.787 - 12.07) 0.6 (0.143 - 2.514) No 24 14 (73.7) 10 (90.9) 0.438** 9.333 (7.933 - 10.674) 0.405 Reference Res 2 2 (10.5) 0 (0) 6.5 (3.035 - 9.965) 2.54 (0.295 - 21.866) extudied 4 3 (15.8) 1 (9.1) 8 (3.842 - 12.158) 2.517 (0.488 - 12.987) extment leukopheresis hydroxiurea No 25 17 (89.5) 8 (72.7) 0.327* Vo 25 17 (89.5) 8 (72.7) 0.327* 10.28 (8.88 - 11.68) 0.056 Reference studied 5 2 (10.5) 3 (27.3) 0.327* 10.28 (8.38 - 11.68) 0.056 Reference	No	16	11 (57.9)	5 (45.5)	0.510**	8.375 (6.439 - 10.311)	0.469	Reference	
No 24 14 (73.7) 10 (90.9) 0.438** 9.333 (7.993 - 10.674) 0.405 Reference fea 2 2 (10.5) 0 (0) 6.5 (3.035 - 9.965) 2.54 (0.295 - 21.866) studied 4 3 (15.8) 1 (9.1) 8 (3.842 - 12.158) 2.517 (0.488 - 12.987) eatment leukopheresis hydroxiurea N 1 (9.1) 0.327* 10.28 (8.88 - 11.68) 0.056 Reference Vo 25 17 (89.5) 8 (72.7) 0.327* 10.28 (8.38 - 11.68) 0.056 Reference fea 5 2 (10.5) 3 (27.3) 0.327* 10.28 (8.38 - 8.116) 3.622 (0.851 - 15.422)	Yes	14	8 (42.1)	6 (54.5)		10.429 (8.787 - 12.07)		0.6 (0.143 - 2.514)	0.484
24 14 (73.7) 10 (90.9) 0.438** 9.333 (7.933 - 10.674) 0.405 Reference 2 2 (10.5) 0 (0) 6.5 (3.035 - 9.965) 2.54 (0.295 - 21.866) 4 3 (15.8) 1 (9.1) 8 (3.842 - 12.158) 2.517 (0.488 - 12.987) 11 leukopheresis hydroxiurea 8 (72.7) 0.327* 10.28 (8.88 - 11.68) 0.056 Reference 5 2 (10.5) 3 (27.3) 5.6 (3.084 - 8.116) 0.056 Reference	Flt3								
2 2 (10.5) 0 (0) 6.5 (3.035 - 9.965) 2.54 (0.295 - 21.866) 4 3 (15.8) 1 (9.1) 8 (3.842 - 12.158) 2.517 (0.488 - 12.987) 1t leukopheresis hydroxiurea 2 1 (9.1) 8 (3.842 - 12.158) 2.517 (0.488 - 12.987) 25 17 (89.5) 8 (72.7) 0.327* 10.28 (8.88 - 11.68) 0.056 Reference 5 2 (10.5) 3 (27.3) 5.6 (3.084 - 8.116) 3.622 (0.851 - 15.422)	No	24	14 (73.7)	10 (90.9)	0.438**	9.333 (7.993 - 10.674)	0.405	Reference	
4 3 (15.8) 1 (9.1) 8 (3.842 - 12.158) 2.517 (0.488 - 12.987) nt leukopheresis hydroxiurea 25 17 (89.5) 8 (72.7) 0.327* 10.28 (8.88 - 11.68) 0.056 Reference 5 2 (10.5) 3 (27.3) 5.6 (3.084 - 8.116) 3.622 (0.851 - 15.422)	Yes	2	2 (10.5)	0 (0)		6.5 (3.035 - 9.965)		2.54 (0.295 - 21.866)	0.396
 5) 8 (72.7) 0.327* 10.28 (8.88 - 11.68) 0.056 Reference 5) 3 (27.3) 5.6 (3.084 - 8.116) 3.622 (0.851 - 15.422) 	Not studied	4	3 (15.8)	1 (9.1)		8 (3.842 - 12.158)		2.517 (0.488 - 12.987)	0.270
25 17 (89.5) 8 (72.7) 0.327* 10.28 (8.88 - 11.68) 0.056 Reference 5 2 (10.5) 3 (27.3) 5.6 (3.084 - 8.116) 3.622 (0.851 - 15.422)	Pretreatment leukopl	neresis hyd	Iroxiurea						
5 2 (10.5) 3 (27.3) 5.6 (3.084 - 8.116) 3.622 (0.851 - 15.422)	No	25	17 (89.5)	8 (72.7)	0.327*	10.28 (8.88 - 11.68)	0.056	Reference	
	Yes	5	2 (10.5)	3 (27.3)		5.6 (3.084 - 8.116)		3.622 (0.851 - 15.422)	0.082

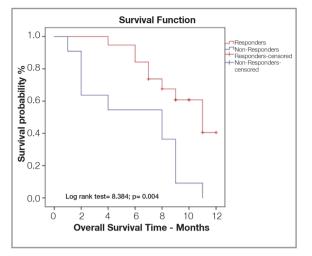


Figure 3. Comparison of patients who responded and non-responded in terms of OS

months, while the median survival time of those who were non-responder was 5.9 months (Table 4 and Figure 3).

While the median duration of EFS existence of those responding to the treatment was 8.5 months, the median duration of EFS of the non-responder patients was 2.2 months (p < 0.001). As a result of the Cox regression analysis, the progression risk of those who responded to the treatment was statistically significantly lower than those who were non-responder (p < 0.001, HR: 0.204 95% CI: 0.086 - 0.482) (Figure 4).

Side Effects and Toxicities

Tumor lysis syndrome was not seen in any patient. All patients were hospitalized on the first cycle. During the 1st cycle, grade 3-4 neutropenia was observed in 25 patients (83.3%). Febrile neutropenia was detected in 21 patients (70%). One patient died at the end of the first cycle due to febrile

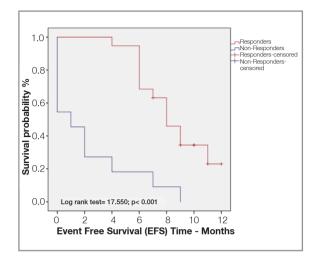


Figure 4. Comparison of patients who responded and nonresponded in terms of EFS

neutropenia related sepsis and multi-organ failure. During the first cycle, grade 3-4 thrombocytopenia was detected in all patients. Median neutrophil (>1 x 10⁹) and platelet (> 50 x 10⁹) recovery time of the patients was determined as 23 days (17-39 days). The most common grade 1-2 side effects, other than hematological side effects, are; nauseavomiting was found in 17 patients (56.7%) and diarrhea in 7 patients (23%).

DISCUSSION

In this multicenter retrospective study, we detected real-world data of Venetoclax + azacitidine combination other than clinical study in patients with advanced age, frail, relapse, refractory AML. Median after 8 months of follow-up, ORR was 63.3%(n= 19); 15 (50%) patients achieved CR or CRi and 4 (13.3%) patients achieved PR. The 6-month OS rate was 66.7%, the 1-year OS was 19.8%, and the median OS was 7 months. The 6-month EFS is 43.3%, the 1-year EFS is 14.3% and the median

Table	Table 4. Comparison of 12-month survival times to groups								
		Responders*	Non-responders*	p**	HR (%95 CI)***	р			
OS	12 months	9.77 (8.561 - 10.979)	5.909 (3.722 - 8.096)	0.004	0.303 (0.122 - 0.757)	0.011			
PFS	12 months	8.589 (7.427 - 9.75)	2.273 (0.421 - 4.124)	< 0.001	0.204 (0.086 - 0.482)	< 0.001			
*Median	*Median (%95 Cl). **Log-rank test. ***reference category (non-responders)								

EFS is 6 months. On overall survival, respondents to Venetoclax combination therapy, the AML cytogenetic risk group, age, and cycles of treatments were determined as independent risk factors.

Overall survival rates in AML decrease with age, independent of treatment.²¹ With increased age, AML patients are more likely to experience unfavorable cytogenetics (Higher percentage of unfavorable cytogenetics), reduced CR recovery rates, and shorter remission duration and shorter median overall survival compared to younger patients.²² In elderly AML, poor performance score, advance cytogenetics, secondary AML, FLT-3 mutation presence have been associated with poor prognosis.²³ Curative and therapeutic options are particularly limited in patients with advanced age, poor performance, relapsed AML patients.

Venetoclax is an oral BCL-2 inhibitor. In the treatment of AML, both in new diagnosed patients and in the relapse refractory group, it is promising with its impressive response rates and outcome data. In Phase 2 study evaluating venetoclax monotherapy in AML, CR / CRi was obtained in 19% of 32 patients who received 400-800-1200 mg venetoclax treatment, and bone marrow response was obtained in 19% of patients, although they did not meet the objective criteria. Due to low response rates and low duration of response times, there has been a trend towards combination therapies.¹⁵ It has been shown that different protein expression panels can be used as a more objective biomarker in different risk classifications in order to evaluate AML risk categories objectively.24 By determining protein expression profiles, the effects of venetoclax and its combinations can be more clearly understood.

In the Phase Ib / II study in the newly diagnosed AML, LDAC (20 mg/m² 10 days) was combined with venetoclax 600 mg / day - in 28 days for AML patients with a median age of 74 years. Venetoclax was increased to 600 mg in 5 days with rump up in the first cycle. CR / CRi ratio was determined as 54% and median duration of response was 1.4 cycles, and better response rates were obtained in denovo AML than secondary AML. Median OS is 10.1 months. The 1-year OS was 27%.²⁵ In the multicenter phase 1b study, the combination of venetoclax and HMA (decitabine / azacitidine)

was used in AML patients who are not suitable for elderly, new diagnosis, and intensive treatment.¹⁰ In the median 15 months follow-up time, the CR / CRi rate was 68%, median response time was 1.2 cycle, Median OS was detected for 17.5 months. Recently, a placebo-controlled phase III study has been published evaluating the combination of Venetoclax and LDAC.²⁶ The new diagnosis was randomized to 211 patients, who were not eligible for intensive chemotherapy, in a 2: 1 ratio. ORR was 48% in the Venetoclax + LDAC arm, and 13% in the LDAC arm and OS advantage is shown. In summary, combination treatments of venetoclax with LDAC or HMA, the response rates obtained in newly diagnosed patients are historically better than LDAC and HMA alone.9,27

In November 2018, the FDA has confirmed venetoclax in combination with HMA or LDAC in AML patients over 75 years of age who are not eligible for intensive therapy.

In studies evaluating the effectiveness of Venetoclax in relapse refractory disease, CR / CRi ratio varies between 12 and 51%.28,29 Aldoss et al published real-life data for the combination of venertoclax + HMA (decitabine / azacitidine) in 33 patients with relapse refractory AML.²⁹ The median age is 62, and the cytogenetic profile is included in the moderate / poor risk group in 87% of patients. In the group that received median 2 serial treatments, it was combined with 400 mg venetoclax and 75 mg/m² 7 days azacitidine or 20 mg/25 days decitabine. Total response rate (ORR) is 64%, CR / CRi ratio is 51%. Patients had CR at the end of the 2nd cycle. There was no difference between the groups that responded and did not respond to the treatment in terms of anthracycline treatment, HMA treatment, and allogenic hematopoietic cell transplantation. This study is similar to our study in terms of design and patient profile and real-world data. In addition, the previously received treatments in the results of our study did not affect the venetoclax response. Although the ORR rates of our study are similar, the 1-year OS rates are quite high compared to our study. It is thought that this difference may be due to the poorer performance of the patients we included in our analysis.

In another analysis of real-world data published in March 2020 and performed in 40 relapsed refractory AML patients from 11 centers in Israel³⁰, Eighty-five percent of patients were combined with venetoclax HMA or LDAC. CR / CRi ratio is 52% in patients who received treatment for at least 2 months. The median OS was found to be 5.5 months after a median follow-up of 5.5 months. In this study, the number of recurrence cases after allogeneic transplant was found to be higher than our study (16.7% vs 42%). Patients' performance status is better than our group. Response rates and survival data in patients are similar to our study.

In a study evaluating the combination of venetoclax + azacitidine in 48 relapsed refractory AML patients, response to treatment, poor cytogenetic risk and age identified as an independent risk factor on survival.³¹ In our study, it was shown that advanced age, cycle number and bad cytogenetic risk were independent factors on survival.

When the side effect profile is evaluated, the most common side effects are treatment-related hematological toxicity and prolonged cytopenias. Infective complications associated with febrile neutropenia have been observed. Similar to our study, venetoclax studies in newly diagnosed AML or relapse refractory disease were most frequently observed side effects are hematological toxicity and infection-related complications. The side effect and toxicity profile in our study are similar to those in the literature.

Our study has some limitations, it has a retrospective design, the number of patients is low, and there is no MRD analysis showing more detailed responses in patients. Except for routine AML cytogenetics and FLT-3, molecular-based IDH1 / 2, NPM1, RUNX1 and TP53 mutations could not be evaluated. However, performance scores are poor, advanced age and relapsed refractory patient group are strong aspects of the study.

Conclusion

In conclusion, the combination of venetoclax + HMA in patients with relapse refractory AML with poor performance score, along with the acceptable toxicity, it provided somewhat higher response rates and additionally, the responding patients benefited surival advantage when compared to non-responding patients. There is a need for randomized-prospective studies with a greater number of patients to evaluate the efficacy and outcome of the venetoclax HMA combination in relapsed refractory AML.

REFERENCES

- Büchner T, Berdel WE, Haferlach C, et al. Age-related risk profile and chemotherapy dose response in acute myeloid leukemia: a study by the German Acute Myeloid Leukemia Cooperative Group. J Clin Oncol 27: 61-69, 2009.
- Krug U, Buchner T, Berdel WE, Muller-Tidow C. The treatment of elderly patients with acute myeloid leukemia. Deutsches Arzteblatt international 108: 863-870, 2011.
- Kantarjian H, O'Brien S, Cortes J, et al. Results of intensive chemotherapy in 998 patients age 65 years or older with acute myeloid leukemia or high-risk myelodysplastic syndrome: predictive prognostic models for outcome. Cancer 106: 1090-1098 2006,.
- Kantarjian H, Ravandi F, O'Brien S, et al. Intensive chemotherapy does not benefit most older patients (age 70 years or older) with acute myeloid leukemia. Blood 116: 4422-4429, 2010.
- Pettit K, Odenike O. Defining and Treating Older Adults with Acute Myeloid Leukemia Who Are Ineligible for Intensive Therapies. Front Oncol 5: 280, 2015.
- Al-Ali HK, Jaekel N, Junghanss C, et al. Azacitidine in patients with acute myeloid leukemia medically unfit for or resistant to chemotherapy: a multicenter phase I/II study. Leuk Lymphoma 53: 110-117, 2012.
- Cashen AF, Schiller GJ, O'Donnell MR, DiPersio JF. Multicenter, phase II study of decitabine for the first-line treatment of older patients with acute myeloid leukemia. J Clin Oncol 28: 556-561, 2010.
- Dombret H, Seymour JF, Butrym A, et al. International phase 3 study of azacitidine vs conventional care regimens in older patients with newly diagnosed AML with > 30% blasts. Blood 126: 291-299, 2015.
- Kantarjian HM, Thomas XG, Dmoszynska A, et al. Multicenter, randomized, open-label, phase III trial of decitabine versus patient choice, with physician advice, of either supportive care or low-dose cytarabine for the treatment of older patients with newly diagnosed acute myeloid leukemia. J Clin Oncol 30: 2670-2677, 2012.
- DiNardo CD, Pratz K, Pullarkat V, et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood 133: 7-17, 2019.
- Konopleva M, Letai A. BCL-2 inhibition in AML: an unexpected bonus? Blood 132: 1007-1012, 2018.

UHOD Number: 4 Volume: 30 Year: 2020

- Pan R, Hogdal LJ, Benito JM, et al. Selective BCL-2 inhibition by ABT-199 causes on-target cell death in acute myeloid leukemia. Cancer discovery 4: 362-375, 2014.
- Vo TT, Ryan J, Carrasco R, et al. Relative mitochondrial priming of myeloblasts and normal HSCs determines chemotherapeutic success in AML. Cell 151: 344-355, 2012.
- Reed JC. A day in the life of the Bcl-2 protein: does the turnover rate of Bcl-2 serve as a biological clock for cellular lifespan regulation? Leuk Res 20: 109-111, 1996.
- Konopleva M, Pollyea DA, Potluri J, et al. Efficacy and Biological Correlates of Response in a Phase II Study of Venetoclax Monotherapy in Patients with Acute Myelogenous Leukemia. Cancer Discov 6: 1106-1117, 2016.
- Bose P, Gandhi V, Konopleva M. Pathways and mechanisms of venetoclax resistance. Leuk Lymphoma 58: 1-17, 2017.
- Tsao T, Shi Y, Kornblau S, et al. Concomitant inhibition of DNA methyltransferase and BCL-2 protein function synergistically induce mitochondrial apoptosis in acute myelogenous leukemia cells. Ann Hematol 91: 1861-1870, 2012.
- Bogenberger JM, Delman D, Hansen N, et al. Ex vivo activity of BCL-2 family inhibitors ABT-199 and ABT-737 combined with 5-azacytidine in myeloid malignancies. Leuk Lymphoma 56: 226-229, 2015.
- Dohner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 129: 424-447, 2017.
- Cheson BD, Bennett JM, Kopecky KJ, et al. Revised recommendations of the International Working Group for Diagnosis, Standardization of Response Criteria, Treatment Outcomes, and Reporting Standards for Therapeutic Trials in Acute Myeloid Leukemia. J Clin Oncol 21: 4642-4649, 2003.
- Juliusson G, Antunovic P, Derolf A, et al. Age and acute myeloid leukemia: real world data on decision to treat and outcomes from the Swedish Acute Leukemia Registry. Blood 113: 4179-4187, 2009.
- 22. Appelbaum FR, Gundacker H, Head DR, et al. Age and acute myeloid leukemia. Blood 107: 3481-3485, 2006.
- Grimwade D, Hills RK. Independent prognostic factors for AML outcome. Hematology Am Soc Hematol Educ Program. 385-395, 2009.
- Almaiman A, Rasedee A, Abdul A, et al. The Potential of Protein Expression Profiles in Categorization Risks for Acute Myeloid Leukemia: A Pilot Study, UHOD - Internat J Hematol Oncol 25: 205-214, 2015.
- Wei AH, Strickland SA, Jr., Hou JZ, et al. Venetoclax combined with low-dose cytarabine for previously untreated patients with acute myeloid leukemia: Results from a phase lb/ll study. J Clin Oncol 37: 1277-1284, 2019.
- Wei AH, Montesinos P, Ivanov V, et al. Venetoclax plus LDAC for patients with untreated AML ineligible for intensive chemotherapy: phase 3 randomized placebo-controlled trial. Blood. 2020.

- 27. Burnett AK, Milligan D, Prentice AG, et al. A comparison of low-dose cytarabine and hydroxyurea with or without alltrans retinoic acid for acute myeloid leukemia and high-risk myelodysplastic syndrome in patients not considered fit for intensive treatment. Cancer 109: 1114-1124, 2007.
- Aldoss I, Yang D, Aribi A, et al. Efficacy of the combination of venetoclax and hypomethylating agents in relapsed/refractory acute myeloid leukemia. Haematologica 103: e404-e07, 2018.
- DiNardo CD, Rausch CR, Benton C, et al. Clinical experience with the BCL2-inhibitor venetoclax in combination therapy for relapsed and refractory acute myeloid leukemia and related myeloid malignancies. Am J Hematol 93: 401-407, 2018.
- Ganzel C, Ram R, Gural A, et al. Venetoclax is safe and efficacious in relapsed/refractory AML. Leuk Lymphoma 1-5, 2020.
- Lou Y, Shao L, Mao L, et al. Efficacy and predictive factors of venetoclax combined with azacitidine as salvage therapy in advanced acute myeloid leukemia patients: A multicenter retrospective study. Leuk Res 91: 106317, 2020.

Correspondence:

Dr. Sude Hatun AKTIMUR

Samsun Egitim ve Arastirma Hastanesi Kisla Baris Bulvari No: 199, 55090 Ilkadim SAMSUN / TURKEY

e-mail: sudehatun@yahoo.com Tel: (+90-532) 668 56 46

ORCIDs:

Sude Hatun Aktimur Ahmet Kursad Gunes Osman Akidan Ayse Karadas Mehmet Turgut 0000-0002-7468-1721 0000-0001-5522-8342 0000-0002-4211-7309 0000-0003-3955-2980 0000-0002-1036-0232

UHOD Number: 4 Volume: 30 Year: 2020