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Tyrosine Kinase Inhibitors in Thyroid Cancer:
May Axl/Gas6 Pathway be a Hidden Target?
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ABSTRACT

Tyrosine kinase inhibitors are molecules that block various intracellular signaling pathways. Trials with some tyrosine kinase inhibi-
tors showed promising results in thyroid cancer. They are thought to owe their antitumor property mainly to their effect on vascular
endothelial growth factor receptor which is important in angiogenesis. Axl is a receptor tyrosine kinase shown to be involved in pro-
liferation migration and survival of cells. Recent studies implied axl in thyroid cancer development. In this review, we aimed to dis-
cuss the mechanism of action of tyrosine kinase inhibitors in general and specifically focus on the axl/gas6 signaling pathway.
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ÖZET

Tiroid Kanserinde Tirozin Kinaz ‹nhibitörleri: Axl/Gas6 Yola¤› Gizli Bir Hedef Olabilir mi?

Tirozin kinaz inhibitörleri çeflitli intraselüler sinyal yolaklar›n› bloke eden molekülleridir. Baz› tirozin kinaz inhibitörleriyle yap›lan çal›flma-
lar,  tiroid kanserinde ümit verici olduklar›n› göstermifltir. Antitümör özelliklerini bafll›ca, anjiogenezde önemli olan vasküler endotelyal
büyüme fakötrü reseptörü üzerindeki etkilerine borçlu olduklar› düflünülmektedir. Axl, hücrelerin ço¤almas›, göçü ve sa¤kal›m›nda ro-
lü oldu¤u gösterilmifl bir reseptör tirozin kinazd›r. Yak›n zamanda yap›lan çal›flmalar tiroid kanseri gelifliminde axl’yi iflaret etmektedir.
Bu derlemede, genel olarak tirozin kinaz inhibitörlerinin etkisini tart›flmak ve özellikle axl/gas6 sinyal yola¤› üzerinde durmak istedik. 
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INTRODUCTION
Kinases are enzymes that transfer a phosphate gro-
up from high-energy donor molecules to specific
substrates. Protein kinases phosphorylate proteins,
resulting in functional changes of target proteins.
There are 90 tyrosine kinases (TK) encoded by hu-
man genome. 
TK can be classified in families (eg. Vascular en-
dothelial growth factor receptor (VEGFR) family
and the fibroblast growth factor receptor (FGFR)
family) or as  receptor TK and non-receptor (cytop-
lasmic) TK. Receptor TKs are needed for transdu-
cing extracellular signals into the cell, while non-
receptor TKs act in intracellular communication.1

TKs are involved in oncogenesis through various
mechanisms. For example it is a TK linked to a
partner protein which creates BCR ABL, the cons-
titutively active fusion protein. CSF1R-like tyrosi-
ne kinase 3, stem cell factor receptor and KIT result
from mutation or deletion of tyrosine kinase doma-
in of the receptor. Other TK related mechanisms in
oncogenesis are, increased or aberrant expression
of TK receptors and decrease in factors regulating
tyrosine kinase activity.2

Tyrosine kinase inhibitors (TKI) are hydrophobic
molecules that are able to pass through the cell
membrane.3 After they enter the cell they interact
with the intracellular domain of receptors and intra-
cellular signaling molecules. So, small molecule ki-
nase inhibitors are able to block the various
downstream signaling pathways intracellularly.
Most small-molecule kinase inhibitors compete
with ATP for ATP-binding site of a kinase. Type I
kinase inhibitors recognize the active conformation
of a kinase.4,5 Type II kinase inhibitors recognize
the inactive conformation of a kinase.6 A third
class; ‘covalent’ inhibitors have been developed to
covalently bind at specific sites of the kinase.7

Many anti-angiogenic tyrosine kinase inhibitors are
so called multi-targeted kinase inhibitors. These
agents target a number of different kinases, which
are involved in several signaling pathways. The
multi-targeted kinase inhibitors are expected to ha-
ve a broader efficacy than a single-targeted inhibi-
tor. For example, a multi-targeted kinase inhibitor
that blocks VEGFR signaling as well as PDGFR sig-
naling –both important in angiogenesis- will be mo-
re effective with regard to antiangiogenic function.8

TKI have anticancer properties and lower side ef-
fects when compared to cytotoxic chemotherapy,
thus they emerged as a new class of therapy. Their
efficacy is proven in several types of carcinoma –
like Philadelphia chromosome positive chronic
myelogenous leukemia (Ph CML)9, metastatic renal
cell cancer (RCC)10 and gastrointestinal stromal tu-
mors (GIST)11- and are currently under investigati-
on for new indications.

TKI and Thyroid 
Recently TKI  has achieved promising results in the
management of thyroid cancer. A phase I study
with XL184 (cabozantinib) revealed partial respon-
se in 15 of the 34 medullary thyroid cancers
(MTC), irrespective of RET mutation.12 Vandetanib
tried in hereditary MTC showed similar efficacy.13,15

The authors attributed this effect to the prominent
antiangiogenic properties of the drug.15 This was al-
so true in the subgroup analysis of patients with
MTC in a phase II trial with axitinib.16

VEGFR is supposed to be the main target of TKI on
thyroid cancer cell. Thyroid follicular cells express
VEGF and VEGFR.17 Animal studies showed reg-
ression in normal capillaries in thyroid tissue when
treated with VEGFR inhibitors.18,19 Sunitinib has se-
lectivity for all isoforms of VEGFR, PDGFR, cKIT
and RET(57) In a phase II trial with sunitinib res-
ponse rate of thyroid cancer to the drug was 31%.20.
On the other hand, imatinib,  aTKI with no effect
on VEGFR showed no effect on thyroid cancer.21

Sorafenib is an oral TKI inhibiting several kinases
including VEGFR 2 -3 PDGFR RET and B –Raf.22

In a phase II trial in which 60% of the patients had
differentiated thyroid cancer (DTC), 7 patients
(23%) had a partial response and 16 patients (63%)
had stable disease.23 Another trial of sorafenib in
metastatic thyroid cancer confirmed these results.24

Axitinib is another multikinase inhibitor inhibiting
all isoforms of VEGFR. In a phase II trial in which
half of the patients suffered DTC, 30% of the pati-
ents showed partial response. Axitinib however is
less selective for PDGFR and KIT.15 On the other
hand, partial response rate of thyroid cancer to mo-
tesanib remained at 14% although it has selectivity
for all isoforms of VEGFR.25
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Is VEGFR the only explanation for TKI effect?
Several points related to the mechansim of action of
TKI in thyroid cancer remains to be explained. As
discussed above not all TKI are effective in thyroid
cancer. TKI with similar efficacy on VEGFR iso-
forms show different efficacy on clinical grounds.
Changing TKI may change the prognosis. For
example; XL-184 (cabozantinib) has particular ac-
tivity against hepatocyte growth factor receptor
(tyrosine-protein kinase Met), vascular endothelial
growth factor receptor 2 (VEGFR-2) and proto-on-
cogene tyrosine-protein kinase receptor Ret.26 In the
phase I study mentioned above, some of patients
responding to XL184 were previously treated with
other TKIs such as vandetanib, sorafenib and mote-
sanib. All four agents are actually known to have
VEGFR as a target.27 If there is no cross resistance
among XL-184 and others, then they may not be
sharing a common mechanism of action.

Effects of Gas6/Axl Signaling
The receptor tyrosine kinase Axl was first identifi-
ed from the DNA of chronic myelogenous leuke-
mia patients.28,29 Axl is stimulated by Gas6 (growth
arrest specific 6 ) (30 ,31). Axl signaling in culture
protects cells from starvation– or tumor necrosis
factor-_-induced apoptosis.32 The overexpression of
Axl and/or its ligand, Gas6, has been reported in
different solid human tumor types33,34 and myeloid
leukemias.35

Axl signaling modulates integrin function. A recent
study showed that Gas6-dependent signaling re-
sults in phosphorylation of h3 integrin in platelets.36

Similar crosstalk has been described between some
angiogenic growth factor receptors (e.g., VEGFR2
and FGFR) and integrins (e.g., avh3 and avh5).37 In-
tegrins mediate substrate adhesion required for cell
migration, proliferation, and survival of growth
factor–stimulated cells. So blocking Axl signaling
may alter the function of certain integrins necessary
for tumor cells. 

Axl is also important in angiogenesis. Axl knock-
down is shown to impair endothelial tube formati-
on in vitro and impair blood vessel formation in a
mouse angiogenesis model. Endothelial cell Gas6
and Axl expression are required for proangiogenic
processes. In a xenograft assay, inhibition of Axl

expression is shown to reduce growth of MDA-
MB-231 breast carcinoma cells.38

Gas6/Axl in Different Cancer Types
Axl overexpression is identified in Imatinib -resis-
tant CML cell lines and patients. The reverse is al-
so true; that is knockdown of Axl, sensitized TKI-
resistant cells to imatinib.39 The same applies to Ni-
lotinib.40 Axl overexpression and/or activation has
been related to resistance to chemotherapy in some
other cancer types ; gastrointestinal stromal tumor
cell lines41, rhabdomyosarcoma42, HER-2 positive
breast tumor cells43, cutaneous squamous cell carci-
noma (SCC)44, Kaposi sarcoma45 and ovarian can-
cer.46

Drugs targeting Axl are currently under investigati-
on. For example, a small-molecule inhibitor of Axl
kinase ( R428) is shown to reduce  tumor burden
and extend survival in intracardiac and orthotopic
mouse models of breast cancer metastasis.47

Gas6/Axl in Thyroid Cancer
A study in three thyroid carcinoma cell lines sho-
wed Axl mRNA and protein overexpression in two
of the cell lines compared with that in normal tis-
sue. Gas 6 demonstrated a modest mitogenic acti-
vity in thyroid carcinoma cells overexpressing
Axl.48 In another study, tissues obtained from 81 pa-
tients with thyroid carcinomas, 18 with adenomas,
and 13 with adenomatous goiters are examined by
immunohistochemistry and in situ hybridization.
Axl was expressed faintly in adenomatous goiter
and adenomas, but not in normal thyroid tissues. Of
the 81 cases of thyroid carcinoma, 70 (86.4%) sho-
wed a positive staining for the Axl protein.49

A similar study in which tissues obtained from 17
patients with thyroid papillary carcinomas from
Gomel, Belarus are examined, axl and Gas6 are fo-
und to be overexpressed in 76.5% and 70.6 % of ca-
ses, respectively. Eighty-five percent of Axl positi-
ve cases coexpressed Gas6. The authors proposed
that, Axl and Gas6 expression might be involved in
childhood thyroid tumorigenesis around Cher-
nobyl.50

A gene expression profiling study of human papil-
lary thyroid cancer cells revealed significant upre-
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gulation of axl. Twenty-seven thyroid carcinoma
samples (9 papillary, 10 follicular and 8 poorly dif-
ferentiated/anaplastic thyroid cancers) were analy-
zed by immunohistochemical staining with an anti-
human Axl antibody and 73% (19/27) scored posi-
tive for Axl expression. Normal thyroid was nega-
tive for Axl expression. Gas 6 staining applied in
the same samples showed positive scoring for Gas
6 mainly in cytosol of carcinoma cells.50

Axl-Gas6 blockade inhibits thyroid cancer cell pro-
liferation and survival. Axl silencing inhibits expe-
rimental tumor growth.  The investigators evalu-
ated the role of Axl in tumor growth by using xe-
nografts of anaplastic thyroid cancer cells into
(nu/nu) immunodeficient mice. Silencing Axl inhi-
bited cancer cell viability, invasiveness, and growth
of tumor xenografts in nude mice.51

CONCLUSION
To some extent TKI have an effect on thyroid can-
cer. The exact mechanism of action of these agents
is not well known and today we do not exactly
know why some TKI work efficiently on thyroid
while some others fail to display an antitumor acti-
on.

Axl /Gas 6 signaling pathway is an important mo-
dulator of integrin function which is crucial for cell
migration, proliferation, and survival of growth
factor-stimulated cells. Like many other tumor cells
thyroid cancer cells also express axl and blocking
axl is reported to have antitumor effect in these
cells. These findings suggest that Axl /Gas 6 signa-
ling pathway may have a role in thyroid carcinoge-
nesis. Further research on axl may enlighten the
mechanism of action of TKI on thyroid cancer cells
and may provide a basis for development of novel
TKI, specifically targeting axl /gas 6 pathway.
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